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Abstract

In this comprehension the theoretical foundations of gravitational waves according to linearized theory
of Einsteins equations are outlined. In the following, we present some astrophysical examples of interest
in regard to their gravitational wave emission. Moreover, we give a brief introduction in present detector
technology and an outlook to future equipment in gravitational waves observatories. For an introduction
in the subject the reader might find the book of P.C.W.Davies [1] very instructive. We profited much of
the lectures of T.Fliessbach [2], which are mainly based on the book of S. Weinberg [3, chap.10).

We will suppose the reader to be familar at least with the general principles of General Relativity.
Beside from that he will find in the appendix a hintful comparison between the basic formulaes displayed
in this comprehension and classical electrodynamic wave formalism.

Partial derivatives of an expression x to the coordinate a are expressed z|,, spatial components are
expressed by bold letters. Latin indices will run from 1 to 3, greek indices from 0 to # as usual. /3

We want to thank Prof. P.1éna, who pleasently contributed to the conceptual design of this compre-
hension.
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Chapter 1

What are Gravitational Waves 7

1.1 Gravity as a Field

The equivalence principle states that gravity locally can be simulated by acceleration. Recall that in Spe-
cial Relativity space-time suffers distortions due to uniform motions. In General Relativity gravitational
forces are replaced by the deformation of space-time in a more elaborated way than in Special Relativity.

Within a cube in 3D-space shear, dilatation and roetation can be described by a stress-tensorof 3x3 =19
components. In four dimensional space-time deformation is described by the 4 x 4 = 16 components of
the energy momentum tensor, where in General Relativity only 10 components are independent.

Consider as an example a ring of particles in a strong gravitational field (fig. 1. ). The ring will
suffer tidal effects and therefore deform (fig. 2. ). This is the relativistic analogon to a solid suffering
shear-forces and therefore deforming.

It must be emphasized, that the deformation of the ring according to General Relativity cannot be
regarded as a distortion of the ring itself (the particles of the ring even do not need to-be coupled), but as
deformation of the space-time itself. Tidal effects are no more described by forces, but by the properties
of the energy momentum tensor of space-time.

The effect of masses (hence energy according to E = mc?) on space-time is described by the field
equations of General Relativity: the Einstein equalions. They describe the deformation of space-time in
terms of the energy momentum tensor.
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1.2 Gravitational Waves

Einstein himself already had found that wavelike solutions of his equations exist, where an undulation of
space-time propagates with the velocity of light. Howerer, if they could have been transformed away by
an acceleration, those distortions only were a mathematical artifice describing undulations in the choice
of coordinates.

That there is real physics in the waves first became clear when they were written in terms of the
Riemann curvature tensor. The Riemann curvature tensor differing from zero describes a real distortion
of space-time, not only a change of coordinates.

That gravitational waves exist can be equally argued in the following way: Imagine the Atlas of our
days, still insisting on physical fittness, amusing himself in free space by pushing away iron spheres. Due
to their gravitational interaction they return, so Atlas has to compensate for their cinetic energy before
pushing them away another time !.

Atlas will find that each time he pushes the masses apart he will have to spend more energy than he
gains from the masses comming back. This is explained by the fact that the gravitational field is time
retarded due to the finite velocity of light: Each moment where the masses fly appart they suffer the
amplified attraction of their constellation at the retardet time corresponding to their actual distance.
This works same for the masses comming back, the acceleration now being weakened according to their
actual position.

Hence, the energy of the system (Atlas and the iron spheres) decreases. We therefore suppose gravi-
tational waves leaving the system carrying the adequate amount of energy with them.

Conservation of the momentum of the center of mass excludes diplole radiation. We will see that
gravitational radiation in its lowest order is quadrupole radiation.

Becaure the waves carry energy, the corresponding particles, the gravitons, are “charged” with mass.
This is implied by the fact that the field equations, the Einstein equations, are non-linear. In the weak
Jield approzsmation we will neglect the charge of the gravitons by linearizing the Einstein equations.

In the linear aproximation there is no static part of energy, so the waves will travel at the speed of
light.

*This conspicuous example is more elaborated in the diverting book of J.A.Wheeler, A Journey into
Gravity and Spacetime

Chapter 2

Weak Field Approximation

A language being more simple and comprehensible, more free of fault and vague ideas, [... [ more _diyni[ied
1o ezpress the inchangeable relations snbetween the natural things [than mathematics] cannof exist.
Joseph FOURIER, Analytical Theorie of Heat (1822)

In comparison to Classical Electrodynamics the interaction between gravity and matter is mimte.
This 18 due to the fact, that the coupling constant for gravity is about 10~ %% weaker than that for the

electromagnetic force. ) ) :
Further the gravitational charge, the mass, is always positive. It is therefore impossible to construct

gravitational dipoles. = . \
We therefore conclude that any observable gravitational radiation is likely to be of very low intensity.

This justifies an aproach by linearizing the field equations, as we will do in this chapter.

2.1 General Solution

The Einstein equations

8xG T
Ry, = - :q (TJV = Egﬂl-’) (2.1)

with the metric tensor g,,., R, = R‘“u the Ricci tensor, R*,,, the Riemann cunatur:l tensor, T,,
the energy momentum tensor, T = T, and the fundamental constants, gravitational coupling constant
G and velocity of light ¢, can be linearized for weak fields

Guv = Ny + hyuy;  where h,, €1 (2.2)

by expressing R, in power series of h,, as
R, = Rw(l) + R”(i) iyt (2.3)

Remark that R,,® = 0. With




1
Ruor = 2 (gaoF-Iv + Guviple = Guplvle — gﬂ‘h“') +0(r-T) (2'*)
hence
1 ’ »
an(” = R’ﬂysl) = 5 (Dh!l’ + h’l[n[u =i elaly — A "’ﬂh‘) (25)
we obtain in first order of &
16xG T
» » o el i i
Dh.uv'i‘f";lﬂlv ~h ;«IJIu_“l vipls = ct (T" 2"”) )

We now consider the invariance of the field equations 2.6 according to coordinate transformations:

2 2 = b (1) (2.7)

In our weak field approximation we must restrict on small deviations from Minkowskian coordinates
8e¢/B8x = O(h). In the new metric tensor

8z, B!
- L] — n (]
9:,, = 8——“'61: 9rn = Mur T hﬂy (28)
we insert
i O (2.9)
81, LY 3
and ¢z = Nas -+ hax. This leads to the gauge transformation of the potentials g,,
By — by = hoy + 6 + 60y (2.10)

The possibility of these transformations allows us to demand conditions on the potentials h,,. We
demand the 4 gauge conditions

L mees (211)

These conditions determine the 4 gauge fields ¢, (z) With 2.11 we obtain from 2.6 the decoupled
linearized field equations

v

162G T
Bh,, = - o (Tuv = TZ'qu) (2-12)
With the abbrevation S, = T,y — 75, T/2 we recognize 2.12 being of the same structure as the

decoupled field equations of electrodynamics (see appendix). We can write down the general solution in
terms of the retarded potentials

iG 3 Sa(x, - | x—x"| /)
hay(x,t) = ——chd z e (2.13)
The retarded time argument in 2.13 significates that changes in the source term propagate with the

velocity of light. The advanced potentials formally also would be a solution of 2.12, but they do not obey
causality.

The gauge 2.11 implicates the choice of coordinates. The significance of the thereby determined
coordinates becomes clear from the physical distances ds? = (g, + h,, )dz*dz” with h,, calculated from
2.13. Analogeous to electrodynamics, the physics is independent from the gauge, that is independert
from the selected coordinates.

2.2 Plane Waves

We now are interested in plane gravitation waves. The linearized field equations held only for weak fields,
that is

[ Bue | €1, and e, |€ 1 (2.14)

for we will in the following restrict on the dominant order in A and ¢. Hence the change between co-
and contravariant components can be done with n,, and the covariant derivative becomes the partial
derivative.

The freedom in the choice of 4 functions ¢ in 2.7 corresponds to the freedom in the choice of 4 gauge
conditions. The 4 gauge conditions 2.11

W =R, (2.15)
are choosen that the linearized field equations 2.6 decouple and therefore lead to 2.12.
Because of hy, = b, ;, there are only 6 components independent. For the free equations
Oh,, =0 (2.16)

another 4 gauge transformations are possible with functions ¢, which obey the wave equation O¢* = 0.
This finally reduces the number of independant components to 2. We show in the following the reduction
from 10 to 2 fields explicitally. First we write down the solution of 2.16 in plane waves:

Buw = euy exp(—ikaz?) +c. (2.17)
therefore
&2
*kyke = Bk or kii= = =&? (2.18)

where k =| k |. The amplitudes e,, are called polarization tensor. The gauge condition 2.11 produces
therefore

2kun*e,, = kn*le,, (2.19)

Like the h,, the polarization tensor has to be symetric,

Cap = Ly (2.20)

For simplicity we consider a wave in z°-direction:

huy = euuexp(—ikz® —ict)+c. (221)

hence



ky =k =0, koz—kgzkzi; (2.22)

Hence the conditions 2.19 are in extensio

¢ootez0 = (€00~ €11 — €33 - €33)/2 (2.23)
eontey = 0 (2.24)
coaten = 0 (2.25)
eoatesns = —(eoo—en — e — €33)/2 (2.26)

Considering the symetric e, = e,, and these 4 conditions the polarization tensor can be determined
by 6 components:
Independent components : eqo, €11, €33, €12, €13, and e3 (2.27)
These components determine the other components:

€33+ €oo
€o1 = —€31, Coz = —€33, €03 = = e o (2.28)

There are gauge transformations possible for the solution of the free equations 2.16. Those are
transformations 2.7 with functions ¢*(z), which are solutions of the free wave equation 2.16:
e*(z) = 8 exp(-1kyz') 4 c. (2.29)

From 2 solution of the wave equations h,, we obtain another solution corresponding 2.10. It rests to
be shown that the transformation is in accord with the gauge conditions 2.11. Therefore the aditional
terms in the gauge condition must vanish, hence

2(ef, €)= (¢, + e (2.30)
This is satisfied because of Oe,(x) = 0.
We insert 2.17 and 2.29 into 2.10. Therefore we obtain the amplitudes €,y of By
Chy = ey + ik, 8, + ik, 6, (2.31)
With 2.22 we obtain for the independent 6 amplitudes:
ehlR=alen (2.32)
€2 = e (2.33)
ey = e13—iké (2.34)
el = ex—iké; (2.35)
€3y = e33 - 2iké; (2.36)
eho = cap+ kb, (2.37)

With a gauge transformation 2.10 with 2.29 we can replace the ¢,, by ey, For the e}, we eliminate
by properly selecting the 6, the amplitudes ¢, eb;, e4; and ehy. Only ¢}, and ¢}, rest. Hence we have
the general form of a plane wave in z%-direction:

0 0 0 0
0 en ¢z 0 o |
(huy) = R P exp(ikz’ — ict) + c. (2.38)

0 0 o 0

This wave has two possible linear polarizations, significated by e,3 = 0 respectively e;, = 0.
We now consider the spin of the wave. Because we have a near Minkowskian metric, we describe a
rotation as Lorentztransformation. A rotation around the z3-axis with angle 6 is described by the matrix

1 0 0 0
0 cos¢p g 0
WY —
(A7) = 0 —sing cosd 0 (250
0 0 0 1
The polarization tensor is transformed according to
e, = A ATe,, (2.40)
Equivalent to the 6 amplitudes in 2.27 are
ex =epntienn, fi=eatien, ¢oo, € (2.41)
With the transformation law 2.40,2.39 for these amplitudes results:
el = exp(2ig)es (2.42)
fi = exp(£ig)fa, ¢5; = e33, ey = coo (2.43)
The law of transformation of a plane wave
¥ = exp(ihg)¥ (2.44)

under rotation around the wave vector k is called spin 4. In a quantisized theory h,, becomes the
wavefunction of the gravitons. The values for A = 0, &1, 2 in 2.43 and 2.43 show that the gravitons
are particles with spin 2.

As we have seen above, the contributions with eqq, €33, €17 and e;; can allways be eliminated by
properly selecting coordinates. Therefore these contibutions have no physical significance. Corresponding
2.41 and 2.43 these are the spins h = 0 and h = +1. On the contrary A = +2 significates a physical
property of the wave, hence a state of the graviton.

2.3 Particles in the Field of the Wave

From equation 2.2 follows that a line element in the weak field approximation is given by

ds? = (n,, + h,,)dz" dz* (2.45)
The trajectories of particles z°(r) in a gravitational field are given by the equation of geodesice
d'z7 , dz* dz*
o i (249)




with the Christoffel symbols I'J,. The equations 2.38, 2.45 and 2.46 define the scope of this section.
From

nv.l
Il = = (Auat + Buspy = hyupa) (2.47)
follows for the field 2.38
1
%0 = = (hoo1o -+ hosjo — hooje) =0 (2.48)
We chose the initial conditions dz'/dr = 0 at time 7 = 0. There we have
T 2.0
iz_) = (c,0) 2.46,2.49 (d’ z ) i (2.49)
dr /-0 dr? /o

For the acceleration in the selected coordinates vanishes, the velocity rests constant. We have hence
as solution of 2.46
'
dx =0, hence z'(r)=c. (2.50)
dr
We have described the particles in the field of the wave by constant spatial coordinates. This does
not mean that the particles are at rest. Rather the relative distances change due to the time dependance
of the metric tensor 2.45.
We especially consider particles ordered on a ring in the z'-z2-plane, see figure 1. From 2.38 and 2.45
follows for the physical distance between particles

P = (6ma = Bma(t)] 3 d2™dz" (m,n = 1,2) (251) - |
where
(hma(t)) = ( ::; :;:1 )exp(—lwt)-)—c. (2.52)

For the metric coefficients do not depend on z = z' and y = z? we can apply 2.51 directly to finite
values 2™ of the particles in figure 1., hence for

z' = Reos(¢), z* = Rsin(4) (2.53)
From 2.51 to 2.53 we obtain for the physical distances R; of the particles from the center:

(1 - 2h cos(2¢) cos(wt)] case  (e17 = h,eyz = 0)
[1 - 2hsin(2¢) cos(wt)] case  (eg3 = h, ey = 0)

There we have distinguished the two possible linear polarizations. The amplitude of the wave is
denoted A. .

The physical deviations £ = R, cos(¢) and y = R, sin($) are shown in figure 2. The 2 independant
directions of polarization include an angle x/4. Circular or eliptic polarized waves can be constructed,
where the axes of the deformed ellipsis are turning in time. The linear combinations ey for circular
polarization are given in 2.41.

The deviations shown in figure 2. significate an oscillating quadrupole moment of the mass distribution.
In contrary a mass distribution with an oscillating quadrupole moment will ermmit gravitational waves.
To examine the power of the radiation we need the energy momentum tensor of the gravitational wave,

R7=:2+y’=R2-{ (2.54)

2.4 Energy and Momentum of the Wave

In electrodynamics the density of energy and momentum is of power 2 in the fields, hence of power 2
in the derivatives A, g of the potentials. In analogie we estimate fields of power 2 in the h,,|,. For a
wave with amplitude h is Buv)a ~ kxh. Because these terms are part of Gy, on the left side of the field
equations, they get a factor ¢'/87G when writing them to the energie momentum tensor of the source
terms. We therefore estimate the energie momentum tensor of a gravitational wave to be

L
(4
by ~ BTék“ k,h? (2.55)
In this section we calculate Lhe exact expression for t,,. We start again from a weak field

Guv = Muv + Ay (hyv <« 1) (2.56)

and the plane wave

huv = euy exp(—ikszt) + . (2.57)
This wave is solution of the wave equations in first order in h, hence
R =0 (2.58)

To obtain the energy momentum tensor of the wave we must consider the second order terms in 2.3,
We suppose near Minkowskian coordinates, therefore introducing the d’Alembert operator

648, =0+ O(h) (2.59)
The scalar of curvature in first order in A is
R = piep, (2.60)
We comprehend the terms in second order in A to a tensor ire
(2) 4
R c
R”(z) - ( !;HV) = 1 (2.61)
Hence the field equations in second order in A are:
RW 8xG
R,un(” = T"#v = __("_,_(Tnu + tyv) (2-62)

This equation is of the form of a wave equation linear in the k.. (compare 2.5) with source terms

Tav = Tapt-tyy (2.63)

Thereby 7,, is the energy momentum tensor. Because T, contains the non-gravitational terms, t,,
is the energy momentum Lensor of the gravitational field:

ot Rg S (€]
by = g [R”m = (—_2" ) (2.64)

We evaluate it with R = ¢*° R,, and 2.58:




Cl
b = TG 2R = s r?® By, @ 4 0 W7 RO ~ by B, O
C‘
e [mu(’)—'i.m”ﬂv,“)] (2.65)

The Ricci tensor

7 2 , 1
R.u(n = (g“’Rh“)( = "XVRMEU.) o hh Rui‘) (7'66)

is defined by the Riemann curvature tensor

R - 1 Bzglv 5 82.‘71!4 = 829nv = &2914
v = 3\ Brrbe | 8206z 9r'0z%  0zFBz°

+9na (I‘:"[‘:‘ -TauTg ) (2.67)

By

The Christoffel symbols are to be calculated in first order:

1 8heY
FZI' =) 5 [hwalv + bovh = 9z, ] (2.68)
hence for 2.66
FG) = _hay 8%hy, ; h,, X 8h,, B 8%hy,
A 2 \8z#8z~ O1'6z¢ B1'8z~ Br#H1v
1 v " e .. Oh*"
+; [hvvlv +h aly K VI:])‘[" sl th wls — 81,-]
1 Ok S ahr
= [h“u + Ao — hu|.,]>'[ 01:‘ R, - ?: (2.69)

For the gauge condition 2.11 the second line of 2.67 disappears. The other terms are of power 2 in h
and look like

le. exp(—ikaz) + c| [e._exp(—ikrz*) +¢]] (2.70)

There we have oscillating terms with exp(+1kiz*), but also coordinate independent terms. The
oscillating terms vanish in the temporal mean, hence

(le..exp(—ikrz*) + ¢ |e exp(=ikyz*) + ¢ y=2R{e ‘) (2.11)

where {...) denotes the temporal mean and R the real part For the wave 2.57 the derivatives
correspond to

8_2‘('“): -1ky(...) (2.72)

Therefore and with 2.71 we obtain

10

(R = R{™ [kukeer, + Eskens - kakeeus - kukves])

S {% [Excon -+ Eveos — koean] [k, + ke - k"c:]} (2.73)

This can be simplified by 2.19, we have

ek ke, = %k"(c"l)‘K‘e“ = ;k,k,, le P (2.74)
With regard to k*k, = 0 2.73 becomes
(R“(’)) =k k. [eu-eh re % | ch JT] (2.75)
Hence the energy momentum tensor for the wave 2.65 is
< Ara Lo g2
tyy = mkuh [= ex =g [ ey ] ] i (2.76)

This can be understood as follows: The momentum flux (o £5,) of the wave must be proportional to
the wave vector k;, therefore results to, o k, and t,, o« k,,. Together with the abore established factor
(2.55) this results in

C
e —lﬁka’ku - scalar (2.77)

The scalar must be in power 2 in the amplitudes e,,. Therefore the two occurrent combinations
appear.

As for every energy momentum tensor, too is the density of energy and to,/c the density of momentum
of the field. Especially the energy flux 4 in x7-direction is

® = clo, (2.78)

This is the energy per unit time and surface element: an energy flux density.

2.5 Quadrupole Radiation

Like an oscillating electric charge emitts electromagnetic radiation, an oscillating mass distribution may
emit gravitational radiation. The aim of this section is to calculate the emitted power P.

Apart from factors of magnitude 1 we can estimate the result in analogie to electrodynamics. For
dipole radiation holds !

w!

p=Y i 2.79
3P (2.79)
with the oscillator frequency w and the dipole moment p ~ gl; whereas q and 1 hold for the charge and
the characteristic amplitude. For the electric quadrupole radiation the factor exp(ikr) in the retarded

potential has to be developped one power in kr = wr/c further. The radiation power therefore becomes

'See textbooks on electrodynamics




ws
P= gQ,“ (2.80)

For an oscillating mass distribution the dipole moment vanishes according to the conservation of
total momentum. The characteristic quantity of the mass quadrupole moment Q ~ MI? leads with q?
corresponding to GM? to

6
P:%GQ’ (2.81)

We determine in the following an exact expression for P and its angular distribution dP/dw. We
disposite the calculation in the following order:

1. Asymptotic fields from the source terms T,
2. Reduction to the spatial components T,,
3. Approximation of long waves

Fields from the T,,

We start from a spatial limited periodic mass distribution

== [ #0 (r<rg)
Tuu(r,t) = T,.(r) exp(=1wt) + c. = { =0 (r>r (2.82)
The retarded potentials are given by 2.13
G ik |r-r
Bau(r, 1) = ——Tup(—:w:)/d“r‘s,w(r’)w +e (2.83)
c |r-r"]
with S, = T, — n,, /2. With the assumption
ro ALy (2.84)
we calculate the power of the radiation. We develop 2.83 for far distances (r > ro):
1G kr — iwt
hyy(r,t) -FM/d’r‘Sp,,(r')exp(—xkr') +ec.
= eun(rt)exp(-ikrz*) +c. (2.85)
with
G 31 r =
esu(r,t) = _;T.[d 1Sy (r) exp(—ikr') + c. (2.86)
r
(2.87)

Notice that the amplitude ¢,,(r,t) is proportional to 1/r and does depend on the direction of r
Moreover, it’s a function of w = ck. It is mainly determined by
T(k)
Suv(k) = Tﬂv(k) - '?.uv(—
hence the Fourier transformed T,,.(k) of T, (r).

The energy flux dP passing by the surface element r?d} is given by the energy momentum tensor of
the gravitational ¢,, field:

(2.88)

(]
dP = ctodf’ = cty, -r2d02 (2.89)
r

We insert the ¢*' from 2.76 with the ¢uy from 2.86. Here we have to make an annotation: In the
section 2.4 the amplitudes e,, were constants, whereas according to 2.86 e,,(r,t) o I/r holds. The
energy momentum tensor 2.65, 2.69 as function of the potentials h,, contains partial derivatives which
produce a factor k, in the case of constant amplitudes. In the case euu(r,t) & 1/r those derivatives
additionally produce terms with a factor 1/r instead of k, ~ A~!. While assuming the point of view far
enough, r > A, those terms can be neglected.

We now evaluate 2.89 with 2.76, 2.86 and 2.88:

2
% = f—:’; [T““(k)"’]‘”’(k) - % | T (k) |7] (2.90)

There we have expressed the power of the radiation by the Fourier transformed T, (k) of the source
distribution

Reduction on the spatial components

Using the continuity equation we express dP/dS2 by the spatial components T".
For in the weak field approximation covariant derivations become partial, the continuity equation is

TR =0 (2.91)

The distribution of the source 2.82 can be written

1
™" (r,t) = E;dekT‘"(k)exp(ikr— iwt) +c.
1
= ;f PET* (k) exp(-ikrz*) + . (2.97)
The continuity equation therefore is

kT =0 (2.93)
Hence we find

T° =T" =k, TV, T =kk,TV (2.94)

with k, = k,/ko. With this we can eliminate all spatial components in 2.90. We obtain

13




TT,, = n,me T T
TO0+ 00 _ 9 ZTO..TQ\ i ET,.T.J
' 3]
= (ki = 2k kb + 606, ) T Tiry (2.95)
Th = m,T=T"-3"7"
= (E,E, = 6,,) TV (2.96)
We inset these expressions in 2.90:
dp _ Gw’ . Uy 9
B = ST (T () (207)
where
1 .- e r
Ayim(8,8) = 6ub,n — 55.,«5,,, - 26k, k -+ 56,,;:,&,,.
B e
+ %émk,k, + sk bk (2.98)

is a function of of the angles # and 4 of the vector k = k/k.
Approximation of long waves

We now suppose that the velocities in the mass distribution v ~ wrq are non-relativistic, hence

v€e or A, (2.99)

So we can use the long wave approximation

™) = /d]rT"(r)exp(-lkr)-: /d“rT"(r)(l—xkr-i— )

o2
o~ /d’rT'f(r) =-5Q" (2.100)
From the continuity equation 2.91 we obtain
™ (*,1) = [izT"a(r) (2.101)
Bl A=ty
So we can transform 2.100
2
2fd3rT'r(r) = ja’uwT”w(r, t) = ‘i:_ fd:'rz'z‘TﬂO(r) (2.102)
c

This is the quadrupole tensor Q" of the energy-mass density p = T9/¢?

14

il dorz' 22 TO(r 2.103
Q pe

Here we consider the non-relativistic case, hence T = pc?. QY therefore is the quadrupole tensor of
the mass density. Because the deviations of the Minkowskian metric are small, Q" can be calculated in
cartesian coordinates.

We inset 2.100 into 2.97 and therefore obtain

dP  Guw® . .
T = e MiImeY Q' (2.104)

The dependance on w® is typical for quadrupole radiation. The weak field approximation is jusciﬁe_d
by the term G/c*. For the Q" are constants, the angle dependence is due to the Aqjy, 11 only, that is to k.
We express its components in the cartesic coordinate system by

(i‘) = (.i’,,E,,fc,) = (sin 8 cos ¢, sin 0 sin ¢, cos ) (2.105)

To obtain the total emitted power we must integrate 2.104 with d2. With 2.105 we obtain

A 4
f dQkik, = T’(s}, (2.106)
R 4ir
[dm-,.l-, kk., = T (61) 8im + by + bim b)) (2.107)

Integration of 2.98 produces

2
fdm,,,u = 2 (1816, ~ 18,61 + 6,05,) (2.108)

From 2.104 with 2.106 to 2.108 we obtain

2
dP _ 2Gw® [ 1
P:/JQE = 5 (‘z},lQ"r =3 ZQ( ) (2.109)

This is the totally emitted power. As seen above (2.81), the structure of this result can easily be
understood. Nevertheless, to obtain the precise expression (dependance on angles, factors) the calculation
has to be done.

The large value of (G/¢*)~! = 3.6 - 10*? W shows that even for high energy densities compared with
electromagnetic radiation infalling on earth the effects of deformation of space-time and therefore the
effects on h in 2.54 are very small.




Chapter 3

Sources of Gravitational Waves

In this chapter we examine different possible sources of gravitational radiation: Hydrogen, Binary Stars,
Pulsars and Supernovaes

3.1 Hydrogen

In the semiclassical image of the Hydrogen an electron (mass m, charge ¢) surrounds a proton. From the
equilibrum of forces mv?/a = ¢?/a and from the quantization of angular momentum A = mua follows
the radius a = A?/me? and the circular frequency wq;:

2
e
€qy = Bwgy = ;—:mc’n’ (3,1)

with the finestructure constant a = e?/hc o~ 1/137. With F,,, from 2.79 and the dipole moment
p ~ ea we estimate the lifetime of an excited state:

2

€at e 3 -3
o (e

= ~ 1077 (3.2)

T, ~N—_—— =

T Pem @ wlie?a® T wy

Similar we estimate the decay of excited states by gravitational radiation. With P,,,, from 2.81 and
with the quadrupole moment @ ~ ma® we obtain as lifetime

2 3 2
St £ ¢ ca ] 39101011

Totae 7 ~———— ~ ——a”*— ~ 10°°10'%107 1% 5 = 10%* a

g8 B G G GmiaY | Gmi Wy % i (3:3)

This rough estimate yields

LTUI 2
B T 34

what means that on 10*? photons there comes only one graviton. Hence the detection by Hydrogen
decay itself is hopeless.

3.2 Binary Stars

The two stars in a binary system emit periodical gravitational waves and therefore coalescend. In the
case of binary neutron stars the maximal frequency is [4]
frar =1 EHz (3.5)

Currently, three binary neutron star systems are known, in particular the system PSR 1913+16 and
very recently the systems PSR 2127-+11C and PSR 1534+12 [5).
In the following we calculate the energy flux infalling on earth due to the emission of gravitational

waves of a binary system.
A system of binary stars can be treated as rotator. In the rotating coordinate system with coordinates
7! the quadrupole tensor as defined above (2.103) is

I, 0 0
e=(8,)= ([ dar’z',.r;p'(r')) =]l 0 I 0 (3.6)
00 I,
In an inertial system the coordinates x, are
2y = (a7 (1)) 5, (3.7

with the matrix

cos(lt —sinQt 0
(af)()= | sin0t cosQt 0O (3.8)
0 0 1
and the quadrupole tensor becomes
D, (1) = (a(f)@c(!)r)u (3.9)
with the components
Du(t) = 5:—’? + "‘;—I’cus(znz) (3.10)
- I
Dy(t) = "T’sin(mo (3.11)
Daypft) = % - %cos(?ﬁz) (3.12)
Dy(t) = I, Dia(t) = Dy(t) =0 (3.13)
what we can express equally by
D, (t) = . + Qi exp(—1wt) + ¢ (3.14)
with the frequency
w=20 (3.15)

and the quadrupole moments
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: ; Ie
Gu=Qn=-1Q13=-iQn = T (3.16)
where we have introduced the inertial moment [ and the ellipticity e:
I +1, L-5L
=t = — 317
1 I Z ( )

Notice that the constant part in 3.14 does not contribute to the emission of waves.
An oscillating quadrupole moment. only exists for a rotator not symetrical to the rotational axis, that
is for ¢ # 0. We inset the results in 2.109 and we obtain the totally emitted power:
=32GS
= S 1 (3.18)
Comparision with 2.81 shows that the relevant quadrupole moment is ~ el. We consider a binary
system of two masses M; and M, at constant distance r as

M, Myr?
M, + My’
From the equilibrum of gravitational and centifugal force we obtain the circumference frequency 0.

I~ = L0, ex~1 (3.19)

MM, M, M; My + M,

2 3
M+ M7ﬂ r=G T hence Q=G 3 (3.20)
Insetting in 3.18 produces the emitted power of the system
4 2aq2 _
r 32 G* M* M) (M, + M;) (3.21)

5 r*

This emission significates a loss of energy of the system. Therefore r is decreasing with time.

From observation of the phase-shift of the binary system PSR 1913+16, the circumference time T
and the two masses were deduced [6). Supposing a circular orbit, from 3.20 the distance r is determined

For the trajectory of PSR 1913+16 is highly elliptical, the calculations become somehow more difficult.
A detailed analysis taking in acconnt the propper motion of the system Lowards the center of the Galaxie
leads to a confirmation of better than one percent [7). This abservation actually is regarded as an indirect
proof of the existance of gravitational waves.

To examine whether the direct proof of gravitational waves is porsible, the energy flux & is decisive.
We take as example the near binary system i Boo. The distance 02, the circnmference time T and the
masses are

D = 12pc, T =0.268d, M, =135 Mg, M; =068 M, (3.22)
So we have with 3.20 and 3.21 for the totally emitted power i
P=32-10w (3.23)

The energy flux infalling on carth therefore is

w
=—=18-10"17_ 324
4x D2 crn? ( )

3.3 Pulsar

The pulsars are systems which emit radiation beams observed as pulses. Because of the high stability of
their period, the phase-shift easily can be measured. They are interpreted to be rotating neutron stars.

From the timing observation one can conclude on the electrodynamics of their magnetospheres, on
space motions of both single and binary pulsars and on the superfluid interiors of neutron stars. Periods
ly within 1.55 ms (PSR 1937--21) up to 4.31 s, mostly between 0.25 s and 1 s (8]

As for the binary stars we want to examine, whether direct proof for gravitational radiation may be
possible. As example we take the pulsar NPO 0532 in the center of the crab nebulae at D ~ 2000pc. His
circumference time 1s

Ti= %r =0.033 s (3.25)

Apart from changes due to star trembling this time is Increasing monotonically:

: 2702
T=Vﬁn_?-=4‘2-1n 1 (3.26)
From the second time derivative in T, the breaking index 7i = pvfi? can be derived. Tt allows to
decide whether the acceleration is due to magnetic dipole radiation or acceleration of a stellar wind, or
whether it is due to gravitational radiation.
The measured values indicate, that magnetic dipole radiation alone does not explain the decrease in
frequency (8]
To get an upper limit, we suppose that all energy is emitted by gravitational radiation

d d (1?2 NG,
qret = @ (T 5:_‘ e (3.27)

Supposing a mass M ~ 1.4 Mg and a radius r = 10km one can estimate the inertia momentum
within

):mr’z;—P’é"—

3:10"gem? <71<3-10%g cm? (3.28)
For I~ 10%* g ¢m? results an ellipticity of

e~6-10714 (3.29)

If the emitted power of the pulsar were due only to gravitational radiation, the energy flux would be
greater than for our binary example, namely

P 107w W
RO = W L em? (3.30)

For the loss due to magnetic dipole radiation is not neglictible, the true value will be less.

3.4 Supernova
A supernova of type I1 is beliefed to be created by the gravitational collapse of a star Lo a neutron star

state [4].
The basic mechanism consists in the core collapse of a star. This leads to a thermormiclear explosion.
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If we suppose a pulse of radiation with

At~0.1s, Av~10°Hz, Av~10°Hz (3.31)

and an amount of energy AE being transformed into gravitational radiation of

AE ~1075...107 My &2 (3.32)

we have in the most optimistic case for a supernova in the virgo cluster (D > 2-107pc) an energy flux
during the time At of

_ _AE e W
¢ = ‘TD’—A’ ~ 10 = (3.33)

The greatest uncertainty in this calculation comes from the supposition 3.32. Calculations on the
collapse are mostly done spherical symmetric [9].

From the Birkhoff-Theorem ! we know that in a purely spherical collapse no gravitational waves would
be emitted.

Calculations on the wave form in the case of non-spherical collapse had been made (see fig. 3.), but
there is only poor knowledge in strength and wave forms [4).

As a burst source, the supernova will emit not only at one frequency, but within a bandwith as
tllustrated in fig. 5c.

3.5 Conclusgion on magnitudes

As we will sce from eq. 4.1, measuring variations in h can be done with laser provided cavilies or delay
lines. Two effects lead to a high accuracy:

1. The light can propagate several times (e.g. n = 50) between the two mirrors. The optical path
length then changes by n - 6R.

2. The precision in measuring the phaseshift A% increases with the number of photons, hence the
intensity lo of the laser. Therefore A ~ AN N,_”7 holds.

We will examine the measurement techniques more closely in chapter 4. Here we estimate the mag-
nitudes of the effect we must be able to measure

For two particles in the field of the wave with amplitude A the distance R is changing in the case of
long waves (A 3+ R) corresponding to

AR
R = hcoswt (3.34)
This follows from 2.54 with AR = R, — Rieny =h,e;3=0and ¢ = xf2.
We will estimate the orders of magunitude for the exampies in the preceeding sections. We therefore
consider a binary star with the masses M; = My = M, with the circumference frequency 2 = w/2, the
distance r between Lhe stars and the distance D to earth. The infalling energy flux is (3.21):

P 64 G'M*

¢ = = e T
4xD?  20x D30 (3.35)

' A spherical symmetric gravitational field is static
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From 2 76 we have for ej; = h and ¢, = 0

ra

tyi= mk,k,,h’ (3.36)

With ko = k3 = w/c results the energy flux of a gravitational wave as function of its amplitude A

Fw?
162G

The frequency  of the binary system is given by 3.20. Comparison of 3.35 and 3.37 leads to the
dimensionless amplitude of the incident wave:

$ = clgy = (337)

32 GM? 8 r?

= e I 3.38
V10 Drt /10 Dr \Fa)
with r, = 2GM/c?.
To put in numbers, we choose
M~My, T= %Nz-m-‘s. D - 100pc (3.39)
With r from 3.20 we obtain
AR r?
h=— o~ 2 ~g-? 3.40
R Dr ( )

The same order of magnitude is obtained for the system 1 Boo as can bee seen in fig. 5d.

Our optimistic supposals for the crab pulsar led to an energy flux about 3 magnitudes more than for
the binary system. On the other hand, the frequency of the pulsar is higher. For A? « /07 (see 3.37)
this in total leads to a decrease in h

h oo (3 41)

for the crab pulsar

Making assamptions on the increase in period due to magnetic dipole radiation, the estimated value
will be less (h~ 10724 . 10793 see fig. 5d. ).

For the supernova we just give a rough estimate. Simplifying by supposing that the emission of the
radiation corresponds to an asymmetric collapse with a single frequency Q,,,, inferior to that of the
pulsar we have due 0 a flux about 8 magnitudes higher than that of the pulsar

b o VIO Dzsirar 2 1010 (3.42)
Q'\Q'd
This is only a very rough estimate. From fig. 5¢. follows that supernova events are believed to ly
within h ~ 10717 10-72,

We conclude that systems to measure effects of gravitational waves at least must be able to measure
variations in the dimensionless amplitude A of less than 10~2°.

It is interesting to ask about the number of gravitational wave sources which will contribute to
the overall infall of gravitational radiation. Nakamura et al. [5] give three scenarios of formation of
coalescending neutron binaries:
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1. The coalescending time of the three known binary neutron stars is ~ 10° years. Because this time
is much smaller than the age of the universe, steady state between the formation rate and the
coalescence rate is assumed. The rate of coalescending binary neutron stars is estimated from the
rate of supernova II events as 6-60 events /yr (d/100 Mpc)? within a distance d Mpc.

. The second scenario supposes Lhe core of a supernova I to form a thin disk in the collapse. Because
such a thin disk is gravitationally instable, it fragments into several pieces. Each fragment will
form a neutron star. These neutron stars will coalescend again to form a single neutron star. If the
number of fragments is two, the system is a binary neutron star system.

This scenario increases the event rate within 10 Mpc to ~ 30 events a year.

- In the third scenario the neutron stars are formed by accretion-induced collapse. For the collapsing
white dwarfl should have the same angular momentum as the accreting matter, the collapse is
supposed to be more or less non-spherical.
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Chapter 4
Wave Detection by Interferometrie

In this chapter we will give a brief introduction in the detection of gravitational waves hy interferometric
devices.

Originally, detetection of gravitational waves was tried to be made by means of resonant absorption
in solids, so-called WWeber defectors. Even if such antennas still exist and physicists spend efforts and
hope in them, we will restrict ourselfs on the interferometric devices for the following reasons:

Firstly, prototypes of interferometric detectors have already reached the sensitivity of the best avail-
iable Weber detectors while possessing a larger spectral bandwith (10]. Secondly, because of the great
progress in quantum optics in the last few years one can attend that the precission in controling laser
cavities (and therefore to measure phase shifts) will rise enormeously, therefore providing highest poten-
tial sensitivity to interferometric detectors Finally, the greatest projects which are actually faveoured by
the governements are all based on interferometrie.

4.1 Principles of Interferometrie

The form of the gravitational waves (fig. 2. ) indicates that waves can be measured using the Michelson
interferometer as shown in fig. 4a. A gravitational wave with amplitude & of optimal polarization induces
length changes é£ in each arm of the interferometer according to 2.54:

8L/t = hcosw,t (4.1)

where £ is the length of the interferometer arm and w, 1§ the frequency of the gravitational wave. For
a single lightbeam spending a storage time 7, in the interferometer results a phase change

6¢=f %’.sm (4.2)

where A is the wavelength of the utilized light within the interferometer. The signal is at maximum if
the storage time 7, js equal to half the gravitational period since the gravitational wave reverses its sign
all half periods.

From the highest frequency of coalescending binaries fn,s =~ 1 kHz (3.5) follows a correspending
minimal wavelength A, ~ 300 km. Because the velocities of both particles, that are the gravitons
interacting with the photons while passing the interferometer, are ¢, it follows that the optimal armlength
is equal to the minimal wavelength.

23




To match storage times with reasonable dimensions of the interferometer (armlength of about several
km), multipass optical delay lines or Fabry-Perot cavities can be used. As long as any large offset from
resonance is assunied to be slow compared with cavity storage times, standard techniques for the analysis
of Fabry-Perot interferometers may be used [11). .

In a Fabry-Perot cavity, the gravitational wave will interact with the electromagnetic field inside the
cavity while inducing sidebands with frequencies

v Ay,

+ where v and v, are the frequency of the light and the gravitational wave respectively.

For a description of Fabry-Perot techniques, especially the interaction of a laser radiation field with
the etalon, we refer to chapter 6.4. in [12]. We briefly resume:

The Fabry-Perol. etalon providet by a source of radiation redistributes the radiation into fringes where
the wavenumbers corresponding to the different angles are dictated by the etalon spacer, while the spectral
profiles of the emitted radiation are defined by the etalon reflectivity. In the case of stimulated emission
as a source inside the cavity the interference effect leads Lo a separation of the modes. Up from an critical
population inversion of the involved energy levels coherent emission sets on. This is what is called a laser.

For mode separation, the radiation source does not have to be inside the Fabry-Perot etalon. In the
case of a Fabry-Perot resonator provided by a laser, the effect of separation will be amplified for resonant
modes. For optimal amplification, the resonator must be tuned to the laser.

Because of the decoupling of the light with storage times of all multiples of 2{/c the optimal path
length cannot strictly be attained. To obtain the path length with aptimal storage times delay lines are
used. However, since the storage time should rather be regarded as a trade-off between signal and losses
for any of the improved techniques (section 4.3) the analysis is Lo be done seperately

4.2 Physical Limits

In nr(lﬂ: to get an idea where effective improvements in the sensitivity of the instruments can be made
we consider the actual physical limits. There we have

¢ photon counting error

radiation pressure error

shot noise in the detector

thermal motion

L]

seismic noise

fluctuations of the refractive index

laser stability

Tl.w last mentioned problems are rather techmical and therefore must be resolved in their proper
domains (photonics, cryolechnics, damping, vacuum technics and feedback circuits). In section 4.3 we will
keep the focus on the first two items, which are intrinsic quantum-optical properties of any interferameter

The figs. 5a. and 5b. show that the technical problems are still dominant. in detecting gravitational
waves; only for burst sources beating the photon counting limit (indicated as photon noise in the dia-
gramms) would give some improvement. )
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Here an annotation must be made: Photon noise, as indicated in the diagramms, is sometimes also
refered to by shot noise. It must not be changed with the detector shot noise or with fluctuations in the
laser-power, for those are not intinsic properties of the interferometer [13]. We refer to photon noise as
photon counting error.

The quantum-mechanical uncertainties can be thought to come from three sources: Firstly, they
come from the quantum mechanical uncertainties in the end mirrors’ position and momenta (refered to
as Uncertainty Principle, m = 400kg in the figs. 5a,b. ). Secondly, there are pertubations of the end
mirrors’ positions by radiation pressure fluctuations. Thirdly there is a fluctuation in the number of
phatons at the output {14] to which we refer to as photon counting error.

In our list we considered the error due to the positions and momenta and the error due to radia-
tion pressure fluctuation as one, to which we refer by radiation pressure error. However, in a rigorous
quantitative treatment of all these errors they have to be expressed by an observable quantity, as the cor-
responding variation in the optical path length At [15]. Nonetheless, the division of the total uncertainty
is a useful conceptual device [14].

It can be shown [14) that, as the input laser power P increases, the photon counting error decreases,
while the radiation pressure error increases  Real interferometers are currently limited by photon-counting
statistics,

By sophisticly preparing the coherent states within the cavities in an interferometer whose performance
is not limited by losses in the mirrors, the photon counting error can be reduced while increasing the
radiation pressure error. For the Glauber state uncertainty circles ! in the complexe amplitude plane
become squeezed, this technique is referred to as “squeezed-state” technique [14].

The photon counting error according to Poisson statistics is outlined in appendix B

4.3 Increasing Sensitivity

To improve the intensity of interference fringes against a background noise due to the statistical fluc-
tuations in the number of the detected photons, a variety of techniques have been developed  For they
make efficiently use of the light in the interferometer by recyclying, they are referred to as “recycling
techniques”

They reduce the photon counting error by increasing the number of photons at the output port of the
interferometer.

Multipass optical delay lines or Fabry-Perot cavities are used to match the storage time to the period
of the gravitational wave. In the case of slow phase changes compared with the cavity storage time the
gain can be calculated from the reflected field. Therefrom the sensitivity and the bandwith of the system
can be estimated [11]. We list in the following the different techniques [11]:

standard recycling The simplest version of recycling consists in placing a mirror M, in the beam with
the correct position to coherently send light back to the cavities or delay lines as shown in figure 4b.
The recycling mirror may be regarded as an impendance matching device which ensures efficient
resonance. The intensity increases by the effective number of times the light is recycled, thereby
enhancing the pholon-counting sensitivity by the square root of this factor. An enhancement in
sensitivity is obtained for all frequencies - standard recycling produces a broadband detector.

resonant recycling Having a background (e.g. pulsars and accreting neutron stars [4]), narrow band
detection will enhance sensivity within a restricted bandwith.

'Glauber states can be used to describe a coherent electromagnetic field (18]
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In the delay-line case in fig. 4c. the storage time of the light in each arm of the interferometer is
arranged Lo be half a gravitational wave period. The light is then passing into the other arm of the
interferometer where, because the gravitational wave changes its sign every half period it sees the
same sign of phase shift as it did before. The signal is in resonance with the interferometer and
therefore builds up coherently. The signal is increased by the number of times the light is cycled
round the whole optical system, which is limited by the losses.

Because the signal instead of the intensity is recycled, the gain is found to be the square of that
by using standard recycling. It is restricted to a narrow bandwith since the interferometer must be
adjusted resonant. to the incomming gravitational wave. Frequencies beside the resonance condition
become out of step with the amplified signal and therefore will vanish.

When optical cavities are used for resonant recycling, the detector can be scen as a system of
coupled cavities which have two normal modes. The laser resonates with one of these, while the
action of the gravitational wave is to pump energy into the other mode. Same as for the delay line
system il is not the isolated cavities but the whole system that is on resonance with the incomming
wave.

While tuning the detector to higher resonant frequencies, resonant recycling can be made broad-
band.

tuned recycling This is a technique to make standard recycling narrow band. Within the same optical
arrangement as for standard recycling (fig. 4b. ) the cavities are tuned so that one of the gravita-
tional wave induced sidebands are on resonance with the isolated cavities. This can be seen as a
coupling of the two cavities, leading to a two mode system. The gain and the bandwith are found
to be the same as for resonant recycling.

It is possible to choose cavity storage times so that the sensitivy gain is somewhere between the
maximum and the broadband value, with a bandwith so that the gain-bandwith product is constant.

dual recycling From the amplitude-phase diagram of the light emerging from a multipass delay line
Michelson interferometer can be shown [11] that when the storage time of the delay line iz compa-
rable to the gravitational wave period, the phase changes (or sidebands) induced on the light no
longer have the correct phase to add most efficiently. Adding the phase shift coherently can be
done within resonant recycling techniques, but this can be done even more simple while adding a
new recycling mirror Mj at the output port of the interferometer as shown in fig. 4d.

The mirrors Mg and M; both form optical cavities which enhance the signal. Moreover, they provide
an additional degree of freedom: the position of M; relative to the image in the beamsplitter of M,.
This allows the phase of the recycled sideband reflected off M; and reentering the interferometer
arms to be adjusted, so it has exactly the correct phase to add coherently with the sideband being
induced by the gravitational wave.

The bandwith of the resonant system for maximized gain is the same as within a cavity resonant
recycling system in the case of neglectable losses at M,. While varying the transmittance of M3, the
bandwith of the system can be varied between the bandwith of the resonant recycling and standard
recycling.

This system is not critical to cavity storage time or to phase offset.
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4.4 Actual Projects

Prototypes of gravitational wave observatorics already exist. Those are the instrument at the MPI Mu-
nich, Garching (30 m) (17}, at the University Glasglow (10 m), at the Institute for Space and Astronautical
Science in Tokyo and an instrument of 40 m at Caltech. They mainly serve to develop new technologies
as

new mirrors

new optical coatings

mechanical isolation

electronic cooling

losses and noise in semiconductors

vacuum systems

feedback circuits

noise reduction techniques
o data aquisition and analysis

To measure the full information in gravitational waves like direction of the source, time-dependance
and polarization a world wide net of detectors is needed. A case study considering up to 5 detectors
and the properties of gravitational radiation that can be measured with can be found in (18] The actual
projects are [19]

LIGO An USA project consisting in the set-up of two detectors with characteristical legth of 4 km each.
AIGO An australian proposal for a 3 ki detector. Not yet confirmed by the governement

TENKO A japanese 100 m prototype in regard to build a great detector.

VIRGO A french-italian colaboration of a 3 km detector near Pisa.

GEO A german-british colaboration of a 3 km detector near Hannover

Recently the involved societies CNRS (F), INFN (1) and MPG {RFA) have assigned a common
declaration where the SERC (GB) also will adjoin [19). Currently the european research community is
trying Lo integrate and unify all efforts for the search of gravitational waves.
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Appendix A

Electrodynamical Waves

Like Classical Electrodynamics, Einsteins theory of Gravity is also a Classical Field Theory. ' 1t therefore
should not be very astonishing that both theories have elements in common. For we suppose the reader
being more familar with Classical Electrodynamics, we give a short recall in this appendix to outline the
similarities between the two theories.

Let us start with the inhomogencous field equation in its covariant form:

4
F*y = gi" (A1)

with the field tensor F*# expressed by the 4 polential fields A% = (b, A):
Fof = A — A, (A.2)

which automatically satisfies the homogeneous field equations. Equation A 2 holds under the following
gange transformation

AT — A" o0y (A.3)

with an arbitary scalar field y. This allows to demand an arbitary scalar condition to the potentials.
We demand the Lorentz gauge

A", =0 (A4)
so that the inhomogencous field equations decouple to

4
o4s = Zje (A3)
c

In the case of free fields, thal is J* =0 A4 and A.5 permit another gauge transformation A.3 with

a solution x of the wave equation. This allows another gauge condition A® = & = 0. Therefrom the free
wave equations can be written

04" =0, A"=¢ =, A = (A.6)

Therefore only two mdependend frelds exist. A complete set of solutions are the plane waves

*“Classical” therefore refers to the fact that quantum effects are neélerhed,
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A =% exp(—ikyz®) e, (A7)
= ¢” exp(—ikr — iwt) -tc.

with (°) = (w/c,k) and (z%) = (ct, r). The equation DA® = 0 causes

Eok® =0 or w?=c2? (A.3)

with k =| k |. The amplitude ¢® of the wave respectively the spatial part o is called polarisation
vector. The equations A 8 further restrict this vector according to

(e?)=(0,e), ek=0 (A.9)
In a coordinate system with z, paralle] to k the two indepanedant fields are the z; and z, components:
(A7) = (0,¢",¢%,0) exp(ikz3 — iwt) + c. (A.10)

Therefore two linear polarizations of the wave are possible. They can be indicated by e! = 4, ¢? =
and ¢! =0, ¢? = A. We obtain circular polarized waves by

(A2c) = A0, 1,41,0) exp(1ka® — iwt) (A.11)
Rotating the coordinate system by an angle 4 in z? this solution is transformed according to

Ay CEE exp(Fig) A2, (Aa2)

In the quantisized theory A is the wavefunction of the particles, the photons. Then A.12 means that
the photons have spin A in direction of k.
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Appendix B

Poisson Statistics

A Poisson distribution is the normalized density distribution in k discrete values

Ak
Py = grexp(=d), (k=0.1,..) (B.1)
with parameter .
The first Lwo moments are
mo= A (B.2)
B2 = AT

Therefore the mean square deviation is

ol =-pl=2 (B.3)

In the case of discrete photons being detected at the output port of an interferometer, the expected
value of the number of photons N is the first moment, hence

A=N (B.4)

The relative standard deviation decreases with the number of photons
Gret = a/p = L B
rel = 0[P = N (B.5)

that is within the intensity of the signal in the interferometer.
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Wave forms produced by two very different scenarios for the

collapse of a normal star to form a neutron star. Wave form (a) is from Saenz
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The characteristic amplitudes h. (equation (31b)) and frequencies f;
(equation (31a)) of gravitational waves from several postulated burst sources
(thin curves), and the sensitivities hy,,, of several existing and planned
detectors (thick curves and circles) (h,,, is the amplitude h of the weakest
source that can be detected three times per year with 90 %, confidence by two
identical detectors operating in coincidence). The abbreviations BH, NS and
SN are used for black hole, neutron star and supernova. The sources are
discussed in detail in the indicated subsections of Section 9.4.1, and the

detectors in the indicated subsections of Section 9.5.

! c

Topg ™=

[}

GPS Dooppler

55000

=
S
-
=
3
F
<
£
w
3 % i
= 5 g — -0
%} B o BHCo f
= % D 36pc C;T!f“c"“ K 9% 25w
= e, ¢ Qille) 7 A, A
& e
s 100k Ve o5 uT o) 5 =
- o L L) AT T — s, .
= 5 o IH Cqm“*‘:eﬂcg‘,_"— P ‘z\% e A 0-q,, /
3 - 36Gpe ) // 2810 25\% ",{c} acd D/
=] H 2 o L 04
2 \ 35 EX 2
=) / 23l 5_‘&\ Qe o
e \ R — =4 ra\ . SA% o
E 0% M, BN e = — iR S Su s
= \ 2 Coolescancy @__SG_ 21 s3\ ’o's“
=) |u°\ Star folling ‘nto mote @ 'Mpe, 4.1(f) £s ?"\. u‘:_; \\ TD// 268 04
— 2,
a M 107 Mg N\ 108 07 Lo & % £
S 00k | o o < gee® -~ 5.5 \ RN 4%
3 —Eoac 103 4 LAy 7
7] “n 5 8H Cogre —— Sn. €, 7
S @ 360c, Setace G0y, >0
5 | Mo Star falling into =oie B IOMpc, 41(!) 1™od SR ook 0y,
¥ e T g7 A L3 Qs
T Me 109 M \ o8 — o7 \ Yoty o e 4
102 1 o \-’, NS Coalescency 0 S0y . g} 09;’ Oﬁac Tolc]
100 My il (o = == = 25 ()N ip7p rey
o CW"":M: = — — M Q-9
\ ¢ D4GpcT 00~ 262 10 N0
L 10-35=~doe .
3 LiGg. 8 Ao 4,062, A
022 R e Ite) " Ohp~qi0??
=l ey C%
NS ¢ —
\OSJQO'“CM“ @ ‘—Eg:-— e 10 Mg Hole
Mo BH C“"’!!Cen:, (llﬂ.‘)G”'J
oc
o3k o2
052 ! 1 1 1 i ! ! - 1033
ol 107* 107* o} 052 10" | o 102 103 0
Characteristic Frequency f, Hz



@ The characteristic amplitudes h, (equation (30)) and frequencies f of waves from
several postulated periodic sources (thin curves), and the sensitivities h3,y. of several existing
and planned detectors (thick curves and circles) (h5,,, is the amplitude A, of the weakest source
detectable with 90 % confidence in a § yr= 10 s integration if the frequency and phase of the

source are known in advance; equation (52a)). The sources shown in the high-frequency

P region, f Z 10 Hz, are all special cases of rotating, nonaxisymmetric neutron stars (Section
= 9.4.2(b)). The steeply sloping dotted lines labeled NS Rotation refer to rigidly rotating
L neutron stars with moment of inertial [:;=10*° g cm ™2, and with various ellipticities ¢ and
§ distances r labeled on the lines (equation (55)). The sources in the low-frequency region,

?_ S <0.1 Hz, areall binary star systems in our galaxy (Section 9.4.2(c)): several specific, known
binaries, which are indicated by name (u Sco, V Pup, .. .); the strongest six spectral lines from
the famous binary pulsar PSR1913 + 16; and the estimated strengths of the strongest white-
dward (‘“WD’) and neutron-star (‘NS’) binaries in our galaxy. The detectors are discussed in

detail in the indicated subsections of Section 9.5.
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